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A brief introduction to rough path theory
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Abstract. Rough path theory was originally developed by Terry Lyons in his seminal paper [Lyo98]
to understand differential systems with highly oscillatory-driven signals. In particular, it provides
a fresh (if not evolutionary) methodology for stochastic differential systems (even beyond the
framework of semimartingales where the classical Itô calculus works.) In this manuscript, we
briefly introduce the ideas behind the theory and give some guidance and references on the study
of its applications.

1. Motivations and Basics
Rough path theory, roughly speaking, is a set of ideas and tools which allows a detailed analysis
of irregular signals on non-linear systems. After two decades of rapid development, it has grown
into a mature and widely applicable mathematical theory, which in particular offers a pathwise
methodology for stochastic analysis. In [Hai13], Martin Hairer used rough path theory to solve
the KPZ equation. Moreover, he was awarded the Fields Medal in 2014 for the invention of the
theory of regularity structures, a major non-trivial extension of rough path theory. It has now
grown into an essentially complete solution theory for general singular, subcritical semilinear
(and quasilinear) stochastic partial differential equations.
In this manuscript, we aim to give a brief (and very incomplete) overview of rough path theory.
We will introduce the integration and differential equation theory of rough paths, some consis-
tency results and links between rough paths and stochastic processes (beyond semimartingales).
A good complementary to this manuscript is the lecture of Weijun Xu in a summer school in
Shanghai, which is available on Bilibili. Peter Friz also gave a great series of lectures at ETH in
the Spring of 2020 (Videos available online). We encourage interested readers to read [CLL07]
to begin with the study of the theory. Some other standard references are [FH14], [FV10] and
[LQ02]. In particular, the comments in [FH14] have mentioned essentially every important work
in this subject up to 2020. Besides, some introductory lecture notes that are much easier to read,
e.g. [All21] and [Gen21], can be found online. If time permits and the readers are interested,
we may update further manuscripts on some applications (e.g. in data science) or the theory of
regularity structures.
To motivate the study of rough paths, we first look at a well-known ill-posed consequence of Itô
calculus. Consider an SDE of the form

d𝑌𝑡 = 𝑓0 (𝑌𝑡 ) d𝑡 + 𝑓 (𝑌𝑡 ) d𝐵𝑡 (1)

where 𝐵 is a standard Brownian motion. The solution map 𝑆 : 𝐵 ↦→ 𝑌 , known as the Itô map,
lacks in general continuity, no matter what norm one used to equip the space of realisations of
𝐵. Indeed, one can first show the following negative result:

Proposition 1.1 ([FH14] Proposition 1.1). There exists no separable Banach space B ⊂ C([0, 1])
with the following properties:

• Sample paths of Brownian motions lie in B almost surely.

• The map ( 𝑓 , 𝑔) ↦→
∫
0 𝑓 (𝑡)d𝑔(𝑡) defined on smooth functions extends to a continuous map

from B × B into the space of continuous functions on [0, 1].
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Proof. See [FH14] Exercise 5.7. □

Let 𝐵 := (𝐵1, 𝐵2) be a two-dimensional Brownian motion, the map 𝐵 ↦→
∫ ·
0 𝐵

1
𝑡 d𝐵2

𝑡 is exactly
the Itô map associated to the SDE d𝑌𝑡 = diag(1, 𝑌1

𝑡 )d𝐵𝑡 . This map, which requires very little,
already lacks continuity by the Proposition above. In this sense, solving Itô-SDEs is analytically
ill-posed.
Rough paths theory, however, extends the continuity of the solution map to Brownian paths by
taking into consideration also the iterated Itô-integrals of the driven signal against itself. In this
sense, the solution map can be viewed as a continuous function of the path and iterated integrals
under a suitable topology.
Generally, if already well-defined, the sequence of all iterated integrals is called the signature of
a path, which will be introduced in the subsection below. Otherwise, one can enhance irregular
paths with objects which mimic iterated integrals. In the next few sections, we will see that
such objects are essentially sufficient to develop an integration and differential equation theory
for irregular signals in a consistent way, which in particular restores the continuity of solution
maps.

1.1. Signature of a regular path
In this Subsection, we introduce two fundamental properties of the iterated integrals of a reg-
ular path against itself, which will be the algebraic and analytic properties to postulate in the
definition of a rough path. To quote Lyons et al. in the introduction of Chapter 3 of [CLL07]:
"The core idea of the theory of rough paths is to consider the signature, rather than the path, as
the fundamental object".

Definition 1.2. Let 𝐽 be a compact interval, 𝑉 a Banach space, 𝑇 (𝑉) the tensor algebra over 𝑉
and 𝑋 : 𝐽 → 𝑉 a regular (e.g. smooth or continuous with finite variation) path. The signature
of 𝑋, denoted by X𝐽 =

(
1, 𝑋1

𝐽
, 𝑋2

𝐽
, . . .

)
∈ 𝑇 (𝑉), is the collection of iterated (Riemann-Stieltjes)

integrals
𝑋𝑛
𝐽 =

∫
𝑢1<· · ·<𝑢𝑛
𝑢1 ,...,𝑢𝑛∈𝐽

d𝑋𝑢1 ⊗ · · · ⊗ d𝑋𝑢𝑛 .

We may also use the notation 𝑆(𝑋) to denote the signature of 𝑋.

Proposition 1.3 (Chen). Let 𝑋 : [0, 𝑠] −→ 𝑉 , 𝑌 : [𝑠, 𝑡] −→ 𝑉 be two smooth (or continuous of
finite variation) paths and 𝑋 ∗ 𝑌 : [0, 𝑡] −→ 𝑉 their concatenation:

(𝑋 ∗ 𝑌 )𝑢 =

{
𝑋𝑢 if 𝑢 ∈ [0, 𝑠]
𝑋𝑠 + 𝑌𝑢 − 𝑌𝑠 if 𝑢 ∈ [𝑠, 𝑡] .

Then
𝑆(𝑋 ∗ 𝑌 ) = 𝑆(𝑋) ⊗ 𝑆(𝑌 ) (2)

where ⊗ denotes the canonical multiplication in the tensor algebra 𝑇 (𝑉).
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Proof. Set 𝑍 = 𝑋 ∗ 𝑌 and 𝑆(𝑍) =
(
1, 𝑍1

0,𝑡 , 𝑍
2
0,𝑡 , . . .

)
. For arbitrary 𝑛 ≥ 1, we have:

𝑍𝑛
0,𝑡 : =

∫
· · ·

∫
0<𝑢1<...<𝑢𝑛<𝑡

𝑑𝑍𝑢1 ⊗ . . . ⊗ 𝑍𝑢𝑛

=

𝑛∑︁
𝑘=0

∫
· · ·

∫
0<𝑢1<...<𝑢𝑘<𝑠<𝑢𝑘+1<...<𝑢𝑛<𝑡

𝑑𝑍𝑢1 ⊗ . . . ⊗ 𝑑𝑍𝑢𝑛

=

𝑛∑︁
𝑘=0

∫
· · ·

∫
0<𝑢1<...<𝑢𝑘<𝑠

𝑑𝑋𝑢1 ⊗ . . . ⊗ 𝑑𝑋𝑢𝑘
⊗
∫

· · ·
∫
𝑠<𝑢𝑘+1<...<𝑢𝑛<𝑡

⊗ . . . ⊗ 𝑑𝑌𝑢𝑛

=

𝑛∑︁
𝑘=0

𝑋 𝑘
0,𝑠 ⊗ 𝑌𝑛−𝑘

𝑠,𝑡

where the third equality is by Fubini’s theorem. Hence, 𝑆(𝑍) = 𝑆(𝑋) ⊗ 𝑆(𝑌 ). □

Eq.(2) is called Chen’s relation. It encodes the important algebraic property of signatures and
asserts that the map 𝑆 is a homomorphism. Another important and inspiring, while analytical,
property of the signature is that it allows recovering integrals

∫
𝑓 (𝑋𝑟 )d𝑋𝑟 for 𝑛-time differentiable

functions 𝑓 , via a level-𝑛 compensated Riemann-Stieltjes sum. For simplicity, we consider here
only paths in R, for which we have the obvious equivalence:

𝑋𝑛
[𝑠,𝑡 ] =

1
𝑛! (𝑋𝑡 − 𝑋𝑠)𝑛 (3)

Proposition 1.4. Let 𝑋 : [0, 𝑡] −→ R be a smooth (or continuous bounded variation) path and
𝑓 ∈ C𝑛+1 (R), we have the following equality:∫ 𝑡

0
𝑓 (𝑋𝑟 )d𝑋𝑟 = lim

| P |→0

∑︁
[𝑡𝑖 ,𝑡𝑖+1 ]∈P

𝑛∑︁
𝑘=0

𝑓 (𝑘 ) (𝑋𝑡𝑖 ) · 𝑋 𝑘+1
[𝑡𝑖 ,𝑡𝑖+1 ] . (4)

In particular, for 𝑛 = 0 we recover the definition of the usual Riemman-Stieltjes integral.

Proof. First, by an (𝑛+1)-order Taylor expansion and Langrange’s mean value theorem, we have
for any 𝑟 ∈ [𝑡𝑖 , 𝑡𝑖+1]:

𝑓 (𝑋𝑟 ) =
𝑛∑︁

𝑘=0
𝑓 (𝑘 ) (𝑋𝑡𝑖 ) ·

1
𝑘! (𝑋𝑟 − 𝑋𝑡𝑖 )

𝑘 + 𝑓 (𝑛+1) (𝑋𝜉 ) ·
1

(𝑛 + 1)! (𝑋𝑟 − 𝑋𝑡𝑖 )
𝑛+1 (5)

for some 𝜉 ∈ [𝑡𝑖 , 𝑟].
Then, one has:

LHS = lim
| P |→0

∑︁
[𝑡𝑖 ,𝑡𝑖+1 ]∈P

∫ 𝑡𝑖+1

𝑡𝑖

𝑓 (𝑋𝑟 )d𝑋𝑟

= lim
| P |→0

∑︁
[𝑡𝑖 ,𝑡𝑖+1 ]∈P

∫ 𝑡𝑖+1

𝑡𝑖

𝑛∑︁
𝑘=0

𝑓 (𝑘 ) (𝑋𝑡𝑖 ) ·
1
𝑘! (𝑋𝑟 − 𝑋𝑡𝑖 )

𝑘d𝑋𝑟

+ lim
| P |→0

∑︁
[𝑡𝑖 ,𝑡𝑖+1 ]∈P

∫ 𝑡𝑖+1

𝑡𝑖

𝑓 (𝑛+1) (𝑋𝜉 ) ·
1

(𝑛 + 1)! (𝑋𝑟 − 𝑋𝑡𝑖 )
𝑛+1d𝑋𝑟
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where the first term is exactly the RHS by eq.(3). Moreover, denoting the second term by Ξ, we
have:

Ξ ≲ lim
| P |→0

∑︁
[𝑡𝑖 ,𝑡𝑖+1 ]∈P

sup
𝑟∈[𝑡𝑖 ,𝑡𝑖+1 ]

(𝑋𝑟 − 𝑋𝑡𝑖 )𝑛+1 · |𝑋 |𝑇𝑉;[𝑡𝑖 ,𝑡𝑖+1 ]

≲ lim
| P |→0

∑︁
[𝑡𝑖 ,𝑡𝑖+1 ]∈P

( |𝑋 | (𝑛+1)−𝑣𝑎𝑟; [𝑡𝑖 ,𝑡𝑖+1 ])𝑛+1 = 0

where the first line follows from the property of Riemann-Stieltjes integrals and the second line
is due to the regularity assumption on 𝑋. □

Indeed, as we shall see later, the compensated Riemann-Stieltjes sum in eq.(4) is exactly how we
construct the integration theory for rough paths.

Remark 1.5. The study of signatures is sometimes also considered within the framework of the
theory of rough paths. Although we will not delve any deeper, it is worth mentioning that the
signature method has had many interesting applications in data science and machine learning
(particularly in the recognition of hand-written Chinese characters), see e.g. [Lyo14], [Gra13],
[CK16] and [LM22].

1.2. Rough paths
Now we may finally introduce the definition of rough paths, which in essence mimics the signature
of a regular path.

Definition 1.6 (Rough path). Let 𝛼 ≤ 1, 𝑉 a Banach space, Δ𝑇 the 2-simplex over the interval
[0, 𝑇] and 𝑇 ( ⌊ 1

𝛼
⌋ ) the truncated tensor algebra up to level ⌊ 1

𝛼
⌋. We say that X =

(
1,X1, . . . ,X⌊ 1

𝛼
⌋
)

:
Δ𝑇 → 𝑇 ( ⌊ 1

𝛼
⌋ ) is an 𝛼-Hölder rough path if for all 0 ≤ 𝑠 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇 we have:

X𝑠,𝑡 = X𝑠,𝑢 ⊗ X𝑢,𝑡 , (6)

and for all (𝑠, 𝑡) ∈ Δ𝑇 and all 𝑖 = 1, · · · , ⌊ 1
𝛼
⌋ we have

X𝑖
𝑠,𝑡



 ≲ (𝑡 − 𝑠)𝛼𝑖 . (7)

The space of 𝛼-Hölder rough paths over [0, 𝑇] on 𝑉 is denoted Ω𝛼 ( [0, 𝑇], 𝑉), equipped with the
following 𝛼-Hölder metric:

𝑑𝛼 (X,Y) :=
∑︁

1≤𝑖≤⌊ 1
𝛼
⌋



X𝑖 − Y𝑖



(𝑖𝛼)− Höl .

We may drop the contents of the parentheses whenever the context is clear.

It is clear that eq.(6) is the imitation of eq.(2). In particular, we have the additivity of X1,
which means it is indeed the parametrisation of a path. As we will see in the next Section,
the analytical requirement for graded Hölder regularity in eq.(7) is essentially what is needed to
construct an integration theory against rough paths. It might seem strange why we require only
a definition for the "signature type" object up to a finite level of the tensor algebra. Indeed, an
𝛼-Hölder rough path extends automatically to a proper "signature" on the whole tensor algebra,
even uniquely in some sense, see e.g. [LV07] and Theorem 3.7 in [CLL07].

Example 1.7. Not surprisingly, one can show that the truncated up to level-⌊ 1
𝛼
⌋ signature of a

smooth path is a 𝛼-Hölder rough path. We call it the canonical 𝛼-Hölder rough path lift.
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Remark 1.8. Note that for a rough path X, the parameterization of the underlying path is
already given by X1, by the first level of eq.(6). For the simplicity of notations, we will use
X := (𝑋,X) to denote a rough path for 𝛼 ∈ ( 1

3 ,
1
2 ] in the following. This is the case that we will

focus on in the rest of the manuscript. For the discussion of rough paths of lower regularities,
see e.g. [FH14] or [FV10]. In our case, eq.(6) essentially becomes the additivity of X1 and

X2
𝑠,𝑡 − X2

𝑠,𝑢 − X2
𝑢,𝑡 = X

1
𝑠,𝑢 ⊗ X1

𝑢,𝑡 , (8)

and eq.(7) becomes
∥X1∥𝛼, ∥X2∥2𝛼 < ∞. (9)

We note that Terry Lyons and Nicolas Victoir proved in [LV07] that given an 𝛼-Hölder path 𝑋

for 𝛼 ∈ ( 1
3 ,

1
2 ], there always exists an 𝛼-Hölder rough path lift X = (𝑋,X), albeit not canonically.

Another interesting question is that given such an 𝑋, up to which point is its rough path lift X
determined by eq.(8) and eq.(9). Indeed, we have the following immediate result:

Proposition 1.9. Let 𝑋 be as above and X, X̃ two 𝛼-Höler rough paths with X1
𝑠,𝑡 = X̃

1
𝑠,𝑡 = 𝑋𝑡−𝑋𝑠 .

Then X̃2
𝑠,𝑡−X2

𝑠,𝑡 = 𝐺𝑠,𝑡 for some 2𝛼-Hölder continuous function 𝐺. Conversely, for any 2𝛼-Hölder
continuous function 𝐹, (X1

𝑠,𝑡 ,X
2
𝑠,𝑡 + 𝐺𝑠,𝑡 ) defines again an 𝛼-Hölder rough path.

Yet another important component of a solid integration theory is an understanding of change in
variables, e.g. a chain rule or Itô’s formula. We now give two ways of postulating a preliminary
chain rule to a rough path.

Definition 1.10 (Geometric rough path). For 𝛼 ≤ 1, We define the space of geometric 𝛼-Hölder
rough paths by 𝐺Ω𝛼 ( [0, 𝑇], 𝑉) ⊂ Ω𝛼 ( [0, 𝑇], 𝑉) as the closure of canonical rough path lifts of all
smooth paths on [0, 𝑇], under the 𝛼-Hölder topology given by the metric in Definition 1.6.

Definition 1.11 (Weakly geometric rough path). An 𝛼-Hölder rough path is called weakly
geometric if it takes value in the step-⌊ 1

𝛼
⌋ nilpotent group 𝐺 ⌊ 1

𝛼
⌋ (𝑉) ⊂ 𝑇 ⌊ 1

𝛼
⌋ (𝑉). We denote the

space of weakly geometric 𝛼-Hölder rough paths by 𝑊𝐺Ω𝛼 ( [0, 𝑇], 𝑉). In particular, for 𝑉 = R𝑛

and 𝛼 ∈ ( 1
3 ,

1
2 ], this is equivalent to

Sym
(
X2

𝑠,𝑡

)
=

1
2X

1
𝑠,𝑡 ⊗ X1

𝑠,𝑡 . (10)

Remark 1.12. Indeed, one can directly show that the canonical rough path lifts of smooth
paths are weakly geometric by the Riemann-Stieltjes integration by parts. Moreover, one can
show the following strict inclusion:

𝑊𝐺Ω𝛼 ( [0, 𝑇], 𝑉) ⊊ 𝐺Ω𝛼 ( [0, 𝑇], 𝑉).

Besides, some more relations between them are discussed in [FH14] Chapter 2.

One of the most important examples of rough paths is the enhanced Brownian motion. Indeed,
almost all Brownian paths can be lifted to rough paths via iterated Itô- or Stratonovich integrals
and we will later see that the integration theory against those rough paths is consistent with the
classical stochastic calculus. Indeed, one has:

Proposition 1.13 (Enhanced Brownian motion). Let 𝐵 be a 𝑑-dimensional Brownian motion
and define

BIto
𝑠,𝑡 : =

∫ 𝑡

𝑠

𝐵𝑠,𝑟 ⊗ 𝑑𝐵𝑟 𝑎𝑛𝑑 BStrat
𝑠,𝑡 : =

∫ 𝑡

𝑠

𝐵𝑠,𝑟 ⊗ 𝑑𝐵𝑟 .
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For any 𝛼 ∈
( 1

3 ,
1
2
)
, with probability one, we have

BIto :=
(
𝐵,BIto

)
∈ Ω𝛼

(
[0, 𝑇],R𝑑

)
𝑎𝑛𝑑

BStrat :=
(
𝐵,BStrat

)
∈ 𝐺Ω𝛼

(
[0, 𝑇],R𝑑

)
.

Proof. See [FH14] Proposition 3.4 and Proposition 3.5. □

2. Integration theory of rough paths
From now on, we focus on the simplest but non-trivial case 𝛼 ∈ ( 1

3 ,
1
2 ]. For rough paths of lower

regularities, we refer to [BDFT21] Chapter 2 for a compact introduction. See also [FH14] Section
2.4 and [Gub10].
In this section, we give an overview of the integration theory of rough paths. We cite most results
from [FH14] Chapter 4. The approach that we present originally contributed to Massimiliano
Gubinelli in [Gub04]. It has been generalised to arbitrary 𝛼 in [Gub10]. Nevertheless, we mention
that the first integration theory of rough paths was introduced in [Lyo98], which was limited to
integrations on one-forms against geometric rough paths.
The intuition behind Gubinelli’s approach is that if "𝑌 looks like 𝑋 at small scales”, then one
can construct

∫
𝑌d𝑋 from

∫
𝑋d𝑋, which is encoded in the definition of a rough path. In the

first Subsection, we explain what "𝑌 looks like 𝑋 at small scales” means, while in the second
Subsection, we construct the rough integral.

2.1. Controlled rough paths
We begin with a definition and some examples for some intuitions.

Definition 2.1 (Controlled paths). Let 𝛼 ∈ (1/3, 1/2], and let 𝑉,𝑊 be Banach spaces. For a
path 𝑋 ∈ 𝐶𝛼 ( [0, 𝑇], 𝑉), we say that a path 𝑌 ∈ 𝐶𝛼 ( [0, 𝑇],𝑊) is controlled by 𝑋 if there exists
a one-form 𝑌 ′ ∈ 𝐶𝛼 ( [0, 𝑇],L(𝑉,𝑊)) such that the remainder 𝑅𝑌 : Δ𝑇 → 𝑊 is defined by the
relation

𝑌𝑠,𝑡 = 𝑌
′
𝑠

(
𝑋𝑠,𝑡

)
+ 𝑅𝑌𝑠,𝑡 , (11)

is such that | |𝑅𝑌 | |2𝛼 < ∞. The space of paths controlled by 𝑋 is denoted by D2𝛼
𝑋

( [0, 𝑇],𝑊) ,
whose elements are the pairs (𝑌,𝑌 ′) defined as above. For such elements (𝑌,𝑌 ′) we call 𝑌 ′ the
Gubinelli derivative of 𝑌 with respect to 𝑋
We endow the space D2𝛼

𝑋
with the seminorm

∥(𝑌,𝑌 ′)∥𝑋,2𝛼 : = ∥𝑌 ′∥𝛼 +


𝑅𝑌

2𝛼 . (12)

Remark 2.2. The intuition for the pair (𝑌,𝑌 ′) is that 𝑌 looks like 𝑋 locally, where the local
similarity is described by 𝑌 ′ with a local error of order 2𝛼. We note that the Gubinelli derivative
is not unique when 𝑌 is "too smooth" (cf. [FH14] Remark 4.7). Moreover, we will see in Section
4 that paths controlled by 𝑋 can also be viewed as rough paths, which provides some necessary
consistency for the theory.

Now we give some important examples of controlled paths.

Example 2.3 (Functions of the reference path). Let 𝐹 : 𝑉 → L(𝑉,𝑊) be a C2
𝑏

function and
𝑋 as above. Then 𝐹 (𝑋) is controlled by 𝑋 by the Gubinelli derivative 𝐷𝐹 (𝑋). The proof is
immediate or see [FH14] Lemma 4.1. In particular, 𝑋 is itself a controlled path with Gubinelli
derivative Id.
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Example 2.4 (Functions of controlled paths). More generally, let 𝑋 be as above, (𝑌,𝑌 ′) a
controlled path in 𝑊 and 𝐹 a proper C2

𝑏
function. Then one can define a controlled rough path

𝐹 (𝑌,𝑌 ′): = (𝐹 (𝑌 ), 𝐹 (𝑌 )′) via

𝐹 (𝑌 )𝑡 := 𝐹 (𝑌𝑡 ) , 𝐹 (𝑌 )′𝑡 := 𝐷𝐹 (𝑌𝑡 )𝑌 ′
𝑡 .

The proof is straightforward or see [FH14] Lemma 7.3 for a proof. Moreover, as a consequence
of the chain rule, we have the consistency that (𝐹 ◦ 𝐺) (𝑌,𝑌 ′) = 𝐹 (𝐺 (𝑌,𝑌 ′)). We note that such
constructions can be generalised for any Lip(𝛾 − 1) function 𝐹 for 2 < 𝛾 < 3.
Example 2.5 (Composition of controlled paths). Let 𝑋 be as above, (𝑌,𝑌 ′) a controlled path
in L(𝑊, 𝑊̄) and (𝑍, 𝑍 ′) a controlled path in 𝑊 . Then one can define a controlled rough path
(𝑌𝑍,𝑌 ′𝑍 + 𝑌𝑍 ′) in 𝑊̄ , where we used the canonical isomorphism

L(𝑉,L(𝑊, 𝑊̄)) ×𝑊 � L(𝑉, 𝑊̄)

in writing 𝑌 ′𝑍. Indeed, for the remainder we have��𝑅𝑠,𝑡

�� : =
��𝑌𝑡𝑍𝑡 − 𝑌𝑠𝑍𝑠 − 𝑌 ′

𝑠𝑍𝑠𝑋𝑠,𝑡 − 𝑌𝑠𝑍 ′
𝑠𝑋𝑠,𝑡

��
=
��𝑌𝑡𝑍𝑡 − 𝑌𝑠𝑍𝑠 − 𝑌𝑠,𝑡𝑍𝑠 − 𝑌𝑠𝑍𝑠,𝑡 + 𝑅𝑌𝑠,𝑡𝑍𝑠 + 𝑌𝑠𝑅𝑍

𝑠,𝑡

��
≲

��𝑌𝑠,𝑡𝑍𝑠,𝑡 + 𝑅𝑌𝑠,𝑡𝑍𝑠 + 𝑌𝑠𝑅𝑍
𝑠,𝑡

�� ∼ |𝑡 − 𝑠 |2𝛼 .

Example 2.6 (Transitivity of controlled paths). Similarly, let 𝑋 be as above, (𝑌,𝑌 ′) controlled
by 𝑋 and (𝑍, 𝑍 ′) controlled by 𝑌 . Then, 𝑍 is also controlled by 𝑋 via the Gubinelli derivative
𝑍 ′𝑌 ′. Indeed, we have 𝑍 = 𝑍 ′𝑌 ′𝑋 + 𝑍 ′𝑅𝑌

𝑋
+ 𝑅𝑍

𝑌
, where the remainder is clearly 2𝛼-Hölder by

assumptions.

2.2. Rough Integration
We are now ready to construct the integral of a path controlled by 𝑋 against an associated rough
path X = (𝑋,X), which mimics essentially the (n=1) compensated Riemann-Stieltjes sum as
in Proposition 1.4. Let 𝑌 ∈ 𝐶𝛼 ( [0, 𝑇],L(𝑉,𝑊)) be a controlled one-form by 𝑋 with Gubinelli
derivative 𝑌 ′, we define the rough integral by∫ 𝑇

0
(𝑌,𝑌 ′)dX : = lim

| P |→0

∑︁
[𝑠,𝑡 ]∈P

(
𝑌𝑠𝑋𝑠,𝑡 + 𝑌 ′

𝑠X𝑠,𝑡

)
(13)

where we used the canonical injection L(𝑉,L(𝑉,𝑊)) ↩→ L(𝑉 ⊗ 𝑉,𝑊) in writing 𝑌 ′
𝑠X𝑠,𝑡 . Re-

call that when 𝑌 and 𝑋 are 𝛼-Hölder continuous for some 𝛼 < 1
2 , the Rieman-Stieltjes integral

lim | P |→0
∑

[𝑠,𝑡 ]∈P 𝑌𝑠𝑋𝑠,𝑡 does not converge in general. However, this is overcome by the compen-
sated one via the following theorem:
Theorem 2.7. Let X and (𝑌,𝑌 ′) be as above, the rough integral in eq.(13) is well defined.
Moreover, we have (

∫ ·
0 (𝑌,𝑌

′)dX, 𝑌 ) ∈ D2𝛼
𝑋

(𝑊).
It is a consequence of the following sewing lemma, which originates from [Gub04]. For this, we
introduce the space C𝛼,𝛽

2 ( [0, 𝑇],𝑊) of functions Ξ from the 2 -simplex {(𝑠, 𝑡) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇}
into 𝑊 such that Ξ𝑡 ,𝑡 = 0 and such that

∥Ξ∥𝛼,𝛽 =∥Ξ∥𝛼 + ∥𝛿Ξ∥𝛽 < ∞,

where ∥Ξ∥𝛼 = sup𝑠<𝑡
|Ξ𝑠,𝑡 |
|𝑡−𝑠 |𝛼 as usual, and also

𝛿Ξ𝑠,𝑢,𝑡 : =Ξ𝑠,𝑡 − Ξ𝑠,𝑢 − Ξ𝑢,𝑡 , ∥𝛿Ξ∥𝛽 : = sup
𝑠<𝑢<𝑡

��𝛿Ξ𝑠,𝑢,𝑡

��
|𝑡 − 𝑠 |𝛽 .
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Lemma 2.8 (Sewing lemma; Gubinelli, 2004). Let 𝛼 and 𝛽 be such that 0 < 𝛼 ≤ 1 < 𝛽.
Then, there exists a unique linear map I : C𝛼,𝛽

2 ( [0, 𝑇],𝑊) → C𝛼 ( [0, 𝑇],𝑊) such that (IΞ)0 = 0
and ��(IΞ)𝑠,𝑡 − Ξ𝑠,𝑡

�� ≤ 𝐶 |𝑡 − 𝑠 |𝛽 . (14)

where 𝐶 only depends on 𝛽 and ∥𝛿Ξ∥𝛽. I is called the sewing map. (The 𝛼-Hölder norm of IΞ
also depends on ∥Ξ∥𝛼 and hence on ∥Ξ∥𝛼,𝛽 .

)
Proof. Uniqueness is immediate. Fix an Ξ and assume 𝐼 and 𝐼 both satisfy eq.(14). It follows
that 𝐼 − 𝐼 satisfies (𝐼 − 𝐼)0 = 0 and

��(𝐼 − 𝐼)𝑠,𝑡 �� = ��(𝐼 − 𝐼)𝑡 − (𝐼 − 𝐼)𝑠
�� ≲ |𝑡 − 𝑠 |𝛽. Since 𝛽 > 1 by

assumption, we conclude that 𝐼 − 𝐼 vanishes identically.
For existence, we construct 𝐼 := IΞ via its increment 𝐼𝑠,𝑡 for any 𝑠, 𝑡 by some successive refinement
on dyadic intervals. Wlog, we assume 𝑇 = 1. First, let [𝑠, 𝑡] = 2−𝑘 [𝑙, 𝑙 + 1] for some 𝑘 ≥ 0 and
𝑙 ∈ {0, ..., 2𝑘 − 1} an elementary dyadic interval. Let P𝑛 be the level-𝑛 dyadic partition of [𝑠, 𝑡],
which contains 2𝑛 intervals, each of length 2−𝑛, starting with the trivial partition P0 = {[𝑠, 𝑡]}.
Define 𝐼0𝑠,𝑡 = Ξ𝑠,𝑡 and then the 𝑛th level approximation by

𝐼𝑛+1
𝑠,𝑡 : =

∑︁
[𝑢,𝑣 ]∈P𝑛+1

Ξ𝑢,𝑣 = 𝐼𝑛𝑠,𝑡 −
∑︁

[𝑢,𝑣 ]∈P𝑛

𝛿Ξ𝑢,𝑚,𝑣 ,

where the second equality is straightforward. It then follows immediately from the definition of
∥𝛿Ξ∥𝛽 that ��𝐼𝑛+1

𝑠,𝑡 − 𝐼𝑛𝑠,𝑡
�� ≤ 2𝑛(1−𝛽) |𝑡 − 𝑠 |𝛽 ∥𝛿Ξ∥𝛽 .

This means the sequence 𝐼𝑛𝑠,𝑡 is Cauchy since 𝛽 > 1 and the required eq.(14) is obtained by
summing up the above bound. Moreover, for such [𝑠, 𝑡], we have 𝐼𝑠,𝑡 = 𝐼𝑠, (𝑠+𝑡 )2

+ 𝐼 (𝑠+𝑡 )
2 ,𝑡

by taking
limit of the obvious identity 𝐼𝑛+1

𝑠,𝑡 = 𝐼𝑛
𝑠,

(𝑠+𝑡 )
2

+ 𝐼𝑛(𝑠+𝑡 )
2 ,𝑡

. Then we can extend this construction to

general dyadic intervals 2−𝑘 [𝑙, 𝑚] by

𝐼2−𝑘ℓ,2−𝑘𝑚 =

𝑚−1∑︁
𝑗=ℓ

𝐼2−𝑘 𝑗 ,2−𝑘 ( 𝑗+1) ,

which is obviously additive for all dyadic numbers. Now we verify eq.(14) for them. For 𝑠 < 𝑡

dyadic, we consider a partition 𝑃 = (𝜏𝑖) of [𝑠, 𝑡] with elementary dyadic intervals such that no
three intervals have the same length. Thanks to the additivity of 𝐼 and eq.(14) for elementary
dyadic intervals, we have:

��𝐼𝑠,𝑡 − Ξ𝑠,𝑡

�� = ������ ∑︁
[𝑢,𝑣 ]∈𝑃

(
𝐼𝑢,𝑣 − Ξ𝑢,𝑣

)
− ©­«Ξ𝑠,𝑡 −

∑︁
[𝑢,𝑣 ]∈𝑃

Ξ𝑢,𝑣
ª®¬
������

≲
∑︁

[𝑢,𝑣 ]∈𝑃
|𝑣 − 𝑢 |𝛽 +

������Ξ𝑠,𝑡 −
∑︁

[𝑢,𝑣 ]∈𝑃
Ξ𝑢,𝑣

������
≤ |𝑡 − 𝑠 |𝛽 +

∞∑︁
𝑖=0

��𝛿Ξ𝑠,𝜏𝑖 ,𝜏𝑖+1

�� ≲ |𝑡 − 𝑠 |𝛽 +
∞∑︁
𝑖=0

(𝜏𝑖+1 − 𝑠)𝛽 ,

(15)

where infinite sums are actually finite. Now denote by 𝐿 the mesh of the partition. Assuming
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wlog that the lengths of intervals in 𝑃 are monotone decreasing, we have for the latter term:

∞∑︁
𝑖=0

(𝜏𝑖+1 − 𝑠)𝛽 =

∞∑︁
𝑖=0

(
𝑖∑︁

𝑘=1
(𝜏𝑘+1 − 𝜏𝑘))𝛽

≤
∞∑︁
𝑖=0

(
𝑖−1∑︁
𝑗=1

𝐿

2 𝑗
)𝛽 ∼ 𝐿𝛽 ∼ (𝑡 − 𝑠)𝛽 .

Finally, we extend our constructions for dyadic numbers continuously to [0, 𝑇]. □

Now the existence of the rough integral in eq.(13) is a consequence of the sewing lemma.

Proof of Theorem 2.7. We set Ξ𝑠,𝑡 := 𝑌𝑠𝑋𝑠,𝑡 + 𝑌 ′
𝑠X𝑠,𝑡 By Chen’s relation in eq.(8), a straightfor-

ward computation shows
𝛿Ξ𝑠,𝑢,𝑡 = −𝑅𝑌𝑠,𝑢

(
𝑋𝑢,𝑡

)
− 𝑌 ′

𝑠,𝑢

(
X𝑢,𝑡

)
.

Then one has Ξ ∈ 𝐶𝛼,3𝛼
2 ( [0, 𝑇],𝑊) where 3𝛼 > 1 by the assumptions on X and (𝑌,𝑌 ′). Then,

applying the sewing lemma to Ξ and taking limit of sums of eq.(14) along any sequence of
partitions gives

lim
| P |→0

∑︁
[𝑠,𝑡 ]∈P

(
𝑌𝑠𝑋𝑠,𝑡 + 𝑌 ′

𝑠X𝑠,𝑡

)
= IΞ,

which means the rough integral is well-defined via eq.(13). Finally, that (IΞ, 𝑌 ) ∈ D2𝛼
𝑋

(𝑊)
follows directly from eq.(14). □

An understanding of the change of variables in rough integration will be presented in Section 5,
provided some consistency between controlled paths and rough paths. Moreover, we note that
some continuity results for rough integration can be found in [FH14] Theorem 4.10 and Theorem
4.17.

Example 2.9 (Consistency with stochastic analysis). For an Itô Brownian rough path 𝐵(𝜔), the
integral of (𝑌 (𝜔), 𝑌 ′ (𝜔)) ∈ D2𝛼

𝐵(𝜔) ( [0, 𝑇],𝑊), the integral
∫
(𝑌,𝑌 ′)𝑑B𝐼𝑡𝑜 exists with probability

one, and moreover if (𝑌,𝑌 ′) are adapted then this integral is equal to the classic Itô integral. This
result is proved in [FH14] Section 5.1, and the corresponding result for Stratonovich is shown in
Section 5.2. These results are significant as they show that rough integration is consistent with
existing stochastic theory.

Example 2.10 (Perturbation of rough integration). Let 𝑓 be a 2𝛼-Hölder continuous function
and let X = (𝑋,X) and X = (𝑋,X) be two rough paths that differ by 𝑓 (cf. Proposition 1.9). Let
furthermore (𝑌,𝑌 ′) ∈ D2𝛼

𝑋
. It follows immediately from eq.(13) that∫ 𝑡

𝑠

(𝑌𝑟 , 𝑌 ′
𝑟 )dX𝑟 =

∫ 𝑡

𝑠

(𝑌𝑟 , 𝑌 ′
𝑟 )dX𝑟 +

∫ 𝑡

𝑠

𝑌 ′
𝑟d 𝑓 (𝑟).

Here, the second term on the right-hand side is a simple Young integral, which is well-defined
since 𝛼 + 2𝛼 > 1 by assumption.

Similar to the constructions above, we can also construct the integral of a controlled path against
a controlled path via the sewing lemma. In particular, as we will see in Section 4, associating a
controlled path with its iterated integral in this sense allows us to translate it to a rough path.
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Proposition 2.11. Let X := (𝑋,X) be an 𝛼-Hölder rough path, (𝑌,𝑌 ′) ∈ D2𝛼
𝑋

(L(𝑊, 𝑊̄)) and
(𝑍, 𝑍 ′) ∈ D2𝛼

𝑋
(𝑊). Then we have a well-defined integral via:∫

(𝑌,𝑌 ′)d(𝑍, 𝑍 ′) := lim
| P |→0

∑︁
[𝑠,𝑡 ]∈P

(𝑌𝑠𝑍𝑠,𝑡 + 𝑌 ′
𝑠𝑍

′
𝑠X𝑠,𝑡 ). (16)

where we identify 𝑌 ′
𝑠𝑍

′
𝑠 as a linear map via the canonical isomorphism L(𝑉,L(𝑊, 𝑊̄))×L(𝑉,𝑊) �

L(𝑉 ⊗ 𝑉, 𝑊̄). Moreover, the integral is again controlled by X with Gubinelli derivative 𝑌𝑍.

Proof. Same as the proof of Theorem 2.7, whereas we set Ξ𝑠,𝑡 := 𝑌𝑠𝑍𝑠,𝑡 + 𝑌 ′
𝑠𝑍

′
𝑠X𝑠,𝑡 . □

3. Solutions of Rough Differential Equations (RDEs)
In this Section, we give a meaning to differential equations driven by rough paths. Essentially,
solutions are constructed in the space of controlled paths. Existence and uniqueness results
will be cited. We mainly present results from [FH14] Chapter 8, where RDE solutions are
understood in an equivalent manner as understood by Davie in [Dav08]. Nevertheless, we note
that the original theory of solutions to RDE by Terry Lyons in [Lyo98], was described in a
slightly different manner. For this, we also refer to [CLL07] Chapter 5 and [FH14] Section 8.8.
Essentially, the two notions are of the same spirit, although solutions in the sense of Lyons were
constructed in a context without controlled paths.

Definition 3.1. Let 𝛼 ∈ ( 1
3 ,

1
2 ], 𝑉,𝑊 Banach spaces and X ∈ Ω𝛼 ( [0, 𝑇], 𝑉). For a 𝐶2

𝑏
function

𝑓 : 𝑊 → 𝐿 (𝑉,𝑊), the controlled path (𝑌,𝑌 ′) ∈ D2𝛼
𝑋

( [0, 𝑇],𝑊) is a solution to the RDE

d𝑌𝑡 = 𝑓 (𝑌𝑡 ) dX𝑡 , 𝑌0 = 𝑦0 ∈ 𝑊 (17)

if for all 𝑡 ∈ [0, 𝑇] we have that 𝑌 satisfies the integral equality

𝑌𝑡 = 𝑦0 +
∫ 𝑡

0
( 𝑓 (𝑌 )𝑠 , 𝑓 (𝑌 )′𝑠)dX𝑠 (18)

where ( 𝑓 (𝑌 ), 𝑓 (𝑌 )′) is constructed from (𝑌,𝑌 ′) as in Example 2.5.

Now we cite a result for the existence and uniqueness of solutions, which is essentially based on
a rough version of Picard-Lindelöf iteration.

Theorem 3.2. In the above setting, we let instead 𝑓 ∈ 𝐶3 (𝑊, 𝐿(𝑉,𝑊)). Then there exists a
unique element (𝑌,𝑌 ′) ∈ D2𝛼

𝑋
( [0, 𝑇],𝑊) such that (𝑌,𝑌 ′) is a solution to the 𝑅𝐷𝐸

d𝑌𝑡 = 𝑓 (𝑌𝑡 ) dX𝑡 , 𝑌0 = 𝑦0 ∈ 𝑊

for times 𝑡 ∈ [0, 𝑇]. Furthermore, we have 𝑌 ′ = 𝑓 (𝑌 ) and for 𝑓 that is also bounded, the solutions
are global in time.

Proof. See [FH14] Theorem 8.4. The proof uses Banach’s fixed point theorem on the space of
controlled paths, endowed with a proper norm. □

Remark 3.3 (Links to SDEs). An important property of such solutions is that the correspond-
ing solution map is continuous, see e.g. [FH14] Theorem 8.5. Moreover, in the case of enhanced
Brownian motion (cf. Proposition 1.13), the notion of solutions to RDEs is consistent with the
notion of solutions to classical SDEs, see e.g. [FH14] Theorem 9.1. Thus, the theory of RDEs
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indeed resolves the ill-posedness of the theory of stochastic differential equations proposed in
Section 1. Based on this, rough paths theory (in particular for enhanced Brownian motion), pro-
vides also another perspective for many other aspects of stochastic analysis, e.g. approximation
of solutions to SDEs, stochastic flows, support theorems and asymptotic behaviours. For this,
we refer to [FH14] Chapter 9 and [FV10] Chapter 17, 18 and 19.

Remark 3.4 (RDEs with drift). In many situations, we are also interested in solutions to the
eq.(17) with an additional drift:

d𝑌𝑡 = 𝑓0 (𝑌, 𝑡)d𝑡 + 𝑓 (𝑌, 𝑡)dX𝑡 . (19)

On the one hand, it is possible to recast eq.(19) in the form of eq.(17) by writing it as an RDE for
𝑌𝑡 = (𝑌𝑡 , 𝑡) driven by X̂𝑡 = (𝑋, X̂) where 𝑋 = (𝑋𝑡 , 𝑡) and X̂ is given by X and the "remaining cross
integrals" of 𝑋𝑡 and 𝑡, given by usual Riemann-Stieltjes integration. However, it is possible to
exploit the structure of such RDEs with drift to obtain somewhat better bounds on the solutions.
For this, we refer to [FV10] Chapter 12.

4. Controlled rough paths revisited: consistency
The theory developed in the previous sections has an obvious drawback, that is, the integrands
and integrators are objects of different types. In particular, the notion of controlled paths is
ad hoc, depending explicitly on the chosen reference paths. However, this can be resolved by
viewing controlled paths as rough paths via its iterated rough integral. This also induces some
other consistency results for the rough integration and differential equation theory. In particular,
it helps to understand the change of variables in rough integration. Most results in this section
are cited from different chapters of [FH14].
Throughout this section, let X, (𝑌,𝑌 ′), (𝑍, 𝑍 ′) etc be the same as in the previous section. We
begin by constructing a canonical map D2𝛼

𝑋
(𝑊) ↩→ Ω𝛼 (𝑊).

Proposition 4.1 (Controlled paths as rough paths). Let X := (𝑋,X) be an 𝛼-Hölder rough path,
(𝑌,𝑌 ′) a path controlled by X. Then Y := (𝑌,Y) is also an 𝛼-Hölder rough path, where

Y𝑠,𝑡 :=
∫ 𝑡

𝑠

𝑌𝑠,𝑟 ⊗ 𝑑𝑌𝑟= lim
| P |→0

∑︁
[𝑢,𝑣 ]∈P

(𝑌𝑠,𝑢 ⊗ 𝑌𝑢,𝑣 + 𝑌 ′
𝑢 ⊗ 𝑌 ′

𝑢X𝑢,𝑣).

In particular, by setting (𝑌,𝑌 ′) := (𝑋, 𝐼𝑑) we recover Y = X. Note that the integral is exactly in
the sense of Proposition 2.11.

Proof. Set Ξ𝑢,𝑣 := 𝑌𝑠,𝑢 ⊗𝑌𝑢,𝑣 +𝑌 ′
𝑢 ⊗𝑌 ′

𝑢X𝑢,𝑣. We have ∥Y∥2𝛼 < ∞ as an immediate consequence of��I (Ξ)𝑠,𝑡 − Ξ𝑠,𝑡

�� ≲ |𝑡 − 𝑠 |3𝛼 from the sewing lemma and


Ξ𝑠,𝑡




2𝛼 < ∞. Chen’s relation is obvious

from summing up the facts that 𝛿
(∫ 𝑡

𝑠
𝑌𝑟 ⊗ d𝑌𝑟

)
𝑠,𝑢,𝑡

= 0 (abstract integration property) and that

𝛿

(∫ 𝑡

𝑠
𝑌𝑠⊗ d𝑌𝑟 )𝑠,𝑢,𝑡 = −𝑌𝑠,𝑢 ⊗𝑌𝑢,𝑡 . The recovery of X is just a sanity check by Chen’s relation. □

In particular, the construction preserves the weakly geometric property:

Proposition 4.2 (Weakly geometricity is preserved). Let X, (𝑌,𝑌 ′) and Y be as above and X
additionally weakly geometric in R𝑑, 𝑌 in R𝑛. Then Y is again weakly geometric.

Proof. Set Ξ𝑢,𝑣 := 𝑌𝑠,𝑢 ⊗ 𝑌𝑢,𝑣 + 𝑌 ′
𝑢 ⊗ 𝑌 ′

𝑢X𝑢,𝑣. By the weakly geometricity of X we have:

2Sym(𝑌 ′
𝑢 ⊗ 𝑌 ′

𝑢X𝑢,𝑣) = 𝑌 ′
𝑢 ⊗ 𝑌 ′

𝑢2Sym(X𝑢,𝑣) = 𝑌 ′
𝑢 ⊗ 𝑌 ′

𝑢 (𝑋𝑢,𝑣 ⊗ 𝑋𝑢,𝑣).
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Thus, we have

Ξ
𝑖, 𝑗
𝑢,𝑣 + Ξ

𝑗 ,𝑖
𝑢,𝑣 = 𝑌 𝑖

𝑠,𝑢𝑌
𝑗
𝑢,𝑣 + 𝑌 𝑗

𝑠,𝑢𝑌
𝑖
𝑢,𝑣 + 𝑌 ′𝑖

𝑢 𝑋𝑢,𝑣 · 𝑌
′ 𝑗
𝑢 𝑋𝑢,𝑣

= 𝑌 𝑖
𝑠,𝑢𝑌

𝑗
𝑢,𝑣 + 𝑌 𝑗

𝑠,𝑢𝑌
𝑖
𝑢,𝑣 + 𝑌 𝑖

𝑢,𝑣 · 𝑌
𝑗
𝑢,𝑣 +𝑂

(
|𝑣 − 𝑢 |3𝛼

)
= 𝑌 𝑖

𝑠𝑌
𝑗
𝑢,𝑣 + 𝑌 𝑗

𝑠 𝑌
𝑖
𝑢,𝑣 + (𝑌 𝑖

𝑣𝑌
𝑗
𝑣 − 𝑌 𝑖

𝑢𝑌
𝑗
𝑢 ) +𝑂

(
|𝑣 − 𝑢 |3𝛼

) (20)

where the second equality is by the simple observation that 𝑌 𝑖 is again controlled by 𝑋 with
Gubinelli derivative 𝑌 ′𝑖 for any component 𝑌 𝑖 and the third equality is a simple computation. Now
summing them up along any P and letting |P | → 0, we obtain as desired Y𝑖, 𝑗

𝑠,𝑡 +Y
𝑗 ,𝑖
𝑠,𝑡 = 𝑌

𝑖
𝑠,𝑡𝑌

𝑗
𝑠,𝑡 . □

Another important property of this embedding is that the integral of a controlled path against
another controlled path (cf. Proposition 2.11) is the same as when viewing the integrator as a
rough path and the integral in the sense of eq.(13), as in the following result:

Proposition 4.3 (Consistency). Let X, (𝑌,𝑌 ′) and Y be as above. If (𝑍, 𝑍 ′) ∈ D2𝛼
𝑌

, then we
have the equality ∫ 𝑡

𝑠

(𝑍𝑟 , 𝑍 ′
𝑟 )dY𝑟 =

∫ 𝑡

𝑠

(𝑍𝑟 , 𝑍 ′
𝑟𝑌

′
𝑟 ) d(𝑌𝑟 , 𝑌 ′

𝑟 )

where (𝑍𝑟 , 𝑍 ′
𝑟𝑌

′
𝑟 ) is a path controlled by 𝑋 by Example 2.6. The left-hand side is understood in

the sense of eq.(13), while the right-hand side in the sense of eq.(16).

Proof. By definition, the second integral has local approximation:

Ξ𝑢,𝑣 = 𝑍𝑢𝑌𝑢,𝑣 + 𝑍 ′
𝑢𝑌

′
𝑢X𝑢,𝑣

= 𝑍𝑢𝑌𝑢,𝑣 + 𝑍𝑢𝑌 ′
𝑢𝑌

′
𝑢X𝑢,𝑣

By definition of Y, we have the local approximation estimate
��Y𝑠,𝑡 − 𝑌 ′

𝑢𝑌
′
𝑢X𝑢,𝑣

�� ∼ |𝑡 − 𝑠 |3𝛼 so that
the first integral has local approximation

Ξ̄𝑢,𝑣 = 𝑍𝑢𝑌𝑢,𝑣 + 𝑍 ′
𝑢Y𝑢,𝑣

= Ξ𝑢,𝑣 +𝑂
(
|𝑡 − 𝑠 |3𝛼

)
.

(21)

Then, for the integrals on a fixed interval [𝑠, 𝑡], which are just the image of the local approxima-
tions under the sewing map in Lemma 2.8, one has

|IΞ𝑠,𝑡 − IΞ̄𝑠,𝑡 | ≤ lim
| P |→0

∑︁
[𝑢,𝑣 ]∈P

( |IΞ𝑢,𝑣 − Ξ𝑢,𝑣 | + |Ξ̄𝑢,𝑣 − IΞ̄𝑢,𝑣 | + |Ξ𝑢,𝑣 − Ξ̄𝑢,𝑣 |)

∼ lim
| P |→0

∑︁
[𝑢,𝑣 ]∈P

(𝑢 − 𝑣)3𝛼 = 0
(22)

where "∼" is by the error estimates in the sewing lemma and eq.(21), and the final equality is
since 3𝛼 > 1. □

The proposition above essentially uses the transitivity of controlled paths (cf. Example 2.6). Sim-
ilarly, using the composition of controlled paths (cf. Example 2.5), one obtains an associativity
property for rough integrations.
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Proposition 4.4 (Associativity). Let X be as above and (𝑌,𝑌 ′) , (𝐾, 𝐾 ′) ∈ D2𝛼
𝑋

two controlled
paths defined in proper Banach spaces such that the two integrals in eq.(23) exist. Moreover, let
(𝑍, 𝑍 ′) :=

(∫ ·
0 (𝐾𝑢, 𝐾

′
𝑢)dX𝑢, 𝐾

)
∈ D2𝛼

𝑋
be another controlled path by Theorem 2.7. Then∫

0
(𝑌𝑢, 𝑌 ′

𝑢) d(𝑍𝑢, 𝑍 ′
𝑢) =

∫
0
(𝑌𝑢𝐾𝑢, 𝑌

′
𝑢𝐾𝑢 + 𝑌𝑢𝐾 ′

𝑢)dX𝑢 (23)

where the integral on the left-hand side is in the sense of eq.(16) and the integral on the left-hand
side is in the sense of eq.(13) and Example 2.5.

Proof. The proof is similar to the proof for Proposition 4.3. By writing down the local approxi-
mations for the two integrals, one sees that they differ by an 𝑂 ( |𝑡 − 𝑠 |3𝛼) term. Then the sewing
map sews them to the same object by the same arguments as in eq.(22). □

Up to this point, we are able to understand every object that we have seen, particularly integrands
in rough integrals and solutions to RDEs, in the space of rough paths. However, it still lacks an
understanding of the change of variables, which will be introduced below.

5. An Ito type formula for rough integration
In classical stochastic calculus, the change of variables is understood via the Itô formula, in which
the quadratic variation of a stochastic process is involved. Recall that the quadratic variation
requires a probabilistic construction. In this subsection, we introduce a pathwise corresponding
object which plays the same role in rough path theory. This object is called the bracket of a
rough path.

Definition 5.1. Let X = (𝑋,X) ∈ Ω𝛼 ( [0, 𝑇], 𝑉) for some 𝛼 ∈ ( 1
3 ,

1
2 ]. The bracket of X is defined

as the path [X] : [0, 𝑇] → 𝑉 ⊗ 𝑉 given by

[X]𝑡 := 𝑋0,𝑡 ⊗ 𝑋0,𝑡 − 2 Sym
(
X0,𝑡

)
Remark 5.2. By Chen’s relation, it is straightforward to verify that

[X]𝑠,𝑡 := [X]𝑡 − [X]𝑠 = 𝑋𝑠,𝑡 ⊗ 𝑋𝑠,𝑡 − 2 Sym
(
X𝑠,𝑡

)
(24)

for all 𝑠, 𝑡. In particular, [X] is 2𝛼- Hölder. Moreover, a rough path is weakly geometric if and
only if its bracket is trivial. In other words, the bracket describes the non-geometric part of a
rough path.

One derives easily from Proposition 1.13 that the bracket of the BIto coincides with the quadratic
variation of a Brownian motion. More generally, one has the following associativity property:

Proposition 5.3. Let X = (𝑋,X) be as above and (𝐾, 𝐾 ′) ∈ D2𝛼
𝑋

. Recall that (𝑍, 𝑍 ′) :=(∫
0 (𝐾𝑢, 𝐾

′
𝑢) dX𝑢, 𝐾

)
∈ D2𝛼

𝑋
. Let Z = (𝑍,Z) be its canonical rough path lift so that in partic-

ular the bracket [Z] of Z exists. Then

[Z] =
∫

0
(𝐾𝑢 ⊗ 𝐾𝑢) d[X]𝑢

where the integral on the right-hand side is a Young integral.
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Proof. Since [X] is 2𝛼-Hölder continuous, the right-hand side exists as a Young integral. More-
over, we have

[Z]𝑠,𝑡 = 𝑍𝑠,𝑡 ⊗ 𝑍𝑠,𝑡 − 2 Sym
(
Z𝑠,𝑡

)
=
(
𝐾𝑠𝑋𝑠,𝑡 + 𝐾 ′

𝑠X𝑠,𝑡

)
⊗
(
𝐾𝑠𝑋𝑠,𝑡 + 𝐾 ′

𝑠X𝑠,𝑡

)
− 2

(
𝑍 ′
𝑠 ⊗ 𝑍 ′

𝑠

)
Sym

(
X𝑠,𝑡

)
+𝑂

(
|𝑡 − 𝑠 |3𝛼

)
=
(
𝐾𝑠𝑋𝑠,𝑡

)
⊗
(
𝐾𝑠𝑋𝑠,𝑡

)
− 2 (𝐾𝑠 ⊗ 𝐾𝑠) Sym

(
X𝑠,𝑡

)
+𝑂

(
|𝑡 − 𝑠 |3𝛼

)
= (𝐾𝑠 ⊗ 𝐾𝑠) [X]𝑠,𝑡 +𝑂

(
|𝑡 − 𝑠 |3𝛼

)
.

Taking lim | 𝜋 |→0
∑

[𝑠,𝑡 ]∈𝜋 on both sides, we obtain [Z]𝑇 =
∫ 𝑇

0 (𝐾𝑢 ⊗ 𝐾𝑢) d[X]𝑢. □

Abusing notation slightly, one could rewrite the above result as[∫
0
𝐾𝑢 dX𝑢

]
𝑡

=

∫ 𝑡

0
𝐾2
𝑢 d[X]𝑢,

which coincides with the quadratic variation of Itô integrals if we set X = BIto.
We are now ready to prove the following rough Itô formula:
Theorem 5.4 (Rough Itô formula). Let X = (𝑋,X) be as above and 𝑓 ∈ 𝐶3. Then

𝑓 (𝑋𝑇 ) = 𝑓 (𝑋0) +
∫ 𝑇

0
(𝐷 𝑓 (𝑋𝑢) , 𝐷2 𝑓 (𝑋𝑢))dX𝑢 +

1
2

∫ 𝑇

0
𝐷2 𝑓 (𝑋𝑢) d[X]𝑢,

where the first integral on the right-hand side is a rough integral, and the second integral is a
Young integral.
Proof. Since 𝑋 is bounded, we assume without loss of generality that 𝑓 ∈ 𝐶3

𝑏
. We have:

𝑓 (𝑋𝑡 ) − 𝑓 (𝑋𝑠) = 𝐷 𝑓 (𝑋𝑠) 𝑋𝑠,𝑡 +
1
2𝐷

2 𝑓 (𝑋𝑠)
(
𝑋𝑠,𝑡 ⊗ 𝑋𝑠,𝑡

)
+ 𝑅𝑠,𝑡

where
𝑅𝑠,𝑡 :=

∫ 1

0

∫ 1

0

(
𝐷2 𝑓

(
𝑋𝑠 + 𝑟1𝑟2𝑋𝑠,𝑡

)
− 𝐷2 𝑓 (𝑋𝑠)

) (
𝑋𝑠,𝑡 ⊗ 𝑋𝑠,𝑡

)
𝑟1 d𝑟2 d𝑟1.

Note that ��𝑅𝑠,𝑡

�� ≤ ∥ 𝑓 ∥𝐶3
𝑏

��𝑋𝑠,𝑡

��3 ≲ |𝑡 − 𝑠 |3𝛼,

so that lim | 𝜋 |→0
∑

[𝑠,𝑡 ]∈𝜋
��𝑅𝑠,𝑡

�� = 0. Since 𝐷2 𝑓 (𝑋𝑠) is symmetric and by eq.(24), we have

𝑓 (𝑋𝑡 ) − 𝑓 (𝑋𝑠) =
(
𝐷 𝑓 (𝑋𝑠) 𝑋𝑠,𝑡 + 𝐷2 𝑓 (𝑋𝑠) X𝑠,𝑡

)
+ 1

2𝐷
2 𝑓 (𝑋𝑠) [X]𝑠,𝑡 + 𝑅𝑠,𝑡 .

Taking lim | 𝜋 |→0
∑

[𝑠,𝑡 ]∈𝜋 on both sides, we deduce the result. □

Corollary 5.5 (Chain rule). Let X, 𝑓 be as above and moreover X weakly geometric, we have
the following chain rule:

𝑓 (𝑋𝑇 ) = 𝑓 (𝑋0) +
∫ 𝑇

0
(𝐷 𝑓 (𝑋𝑢) , 𝐷2 𝑓 (𝑋𝑢))dX𝑢.

Proof. This is because the bracket of a weakly geometric rough path is 0. □

Remark 5.6. The above formulas are restricted to integrands that are functions of the under-
lying path. Indeed, as long as (𝑌,𝑌 ′) and (𝑌 ′, 𝑌 ′′) are controlled paths, one can replace them
with the corresponding derivatives in the above formulas. See [FH14] Theorem 7.7 for a concrete
description. Besides, see [BDFT21] Theorem 3.9 for an Itô formula for weakly geometric rough
paths of lower regularity.

14



6. Conclusions and Comments
Recall that we are initially interested in studying the differential control system

d𝑌𝑡 = 𝑓 (𝑌𝑡 ) d𝑋𝑡 (25)

where 𝑋 is irregular, in the sense that it is less regular than 1
2 -Hölder. To start with, one needs

to construct a well-defined integral
∫
𝑌d𝑋. However, the normal Riemann-Stieltjes sum does

not in general converge by the low regularity of 𝑋. This was however resolved in Section 2 by
postulating 𝑋 with a second-order increment X, viewing 𝑌 as a controlled path and then taking
the compensated Riemann-Stieltjes sum as in 13. In Section 3 we saw that such systems, viewed
as RDE, admit unique solutions for proper 𝑓 via a Picard-Lindelöf iteration in the space of
controlled paths. Section 4 then unifies the notion of controlled paths and rough paths in some
sense and allows us to view rough integrals, and solutions to RDEs as rough paths. Section 5
then finally gives an understanding of the change of variables in rough integrals.
Throughout this manuscript, we see that rough path theory is particularly compatible with Itô
(or Stratonovich-) Integral. Indeed, the connections with probabilistic objects go far beyond
that. A lot of stochastic processes (e.g. certain Gaussian processes and Markov processes) can
be naturally lifted to rough paths, which allows analysis of random systems driven by those
signals, see e.g. [FV10]. Nevertheless, we note that the choice of rough path lifts does matter
and one has to be careful. For instance, in the context of finance, the correct rough paths lift of
a Brownian motion is the Itô enhancement in order to exclude arbitrage opportunities (since we
recover the Black-Scholes model in this case).
In this manuscript, we only considered continuous paths. However, we note that cadlag rough
paths and rough paths with jumps were also quite well-studied by P. Friz et al. In particular, A.
Allan, C. Liu, D. Prömel et al were able to model financial objects in such settings.
In the theory of rough integration, the set of integrands is actually quite limited since controlled
paths have to look like the reference paths locally. In the setting of stochastic analysis, people are
sometimes interested in path-dependent integrands. For instance, the strategy of a stockholder
might depend on the stock prices during a period of time. Indeed, Anna Ananova proved in
her PhD thesis that such strategies can still be viewed as a controlled path in some slightly
weaker sense, as long as the dependence is sufficiently regular in some sense. Her approach used
the non-anticipative functional analysis developed by B. Dupire, R. Cont et al and ensures the
existence of a rough integral.
A main drawback of this theory in the context of stochastic analysis, is that it does not give a
general way to compute expectations. As far as the author knows, this is not (and not likely
to be) solved even in the easiest non-semimartingale case, i.e. the case of fractional Brownian
motions.
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